A smarter way for large language models to think about hard problems
To make large language models (LLMs) more accurate when answering harder questions, researchers can let the model spend more time thinking about potential solutions. But common approaches that give LLMs this capability set a fixed computational budget for every problem, regardless of how complex it is. This means the LLM might waste computational resources on simpler questions or be unable to tackle intricate problems that require more reasoning. To address this, MIT researchers developed a smarter way to allocate […]