Learning False Discovery Rate Control via Model-Based Neural Networks
arXiv:2602.05798v1 Announce Type: cross Abstract: Controlling the false discovery rate (FDR) in high-dimensional variable selection requires balancing rigorous error control with statistical power. Existing methods with provable guarantees are often overly conservative, creating a persistent gap between the realized false discovery proportion (FDP) and the target FDR level. We introduce a learning-augmented enhancement of the T-Rex Selector framework that narrows this gap. Our approach replaces the analytical FDP estimator with a neural network trained solely on diverse synthetic […]