OptiML: An End-to-End Framework for Program Synthesis and CUDA Kernel Optimization
arXiv:2602.12305v1 Announce Type: new Abstract: Generating high-performance CUDA kernels remains challenging due to the need to navigate a combinatorial space of low-level transformations under noisy and expensive hardware feedback. Although large language models can synthesize functionally correct CUDA code, achieving competitive performance requires systematic exploration and verification of optimization choices. We present OptiML, an end-to-end framework that maps either natural-language intent or input CUDA code to performance-optimized CUDA kernels by formulating kernel optimization as search under verification. OptiML […]