A Kernel-based Stochastic Approximation Framework for Nonlinear Operator Learning
arXiv:2509.11070v3 Announce Type: replace Abstract: We develop a stochastic approximation framework for learning nonlinear operators between infinite-dimensional spaces utilizing general Mercer operator-valued kernels. Our framework encompasses two key classes: (i) compact kernels, which admit discrete spectral decompositions, and (ii) diagonal kernels of the form $K(x,x’)=k(x,x’)T$, where $k$ is a scalar-valued kernel and $T$ is a positive operator on the output space. This broad setting induces expressive vector-valued reproducing kernel Hilbert spaces (RKHSs) that generalize the classical $K=kI$ paradigm, […]