Provably Safe Reinforcement Learning for Stochastic Reach-Avoid Problems with Entropy Regularization
We consider the problem of learning the optimal policy for Markov decision processes with safety constraints. We formulate the problem in a reach-avoid setup. Our goal is to design online reinforcement learning algorithms that ensure safety constraints with arbitrarily high probability during the learning phase. To this end, we first propose an algorithm based on the optimism in the face of uncertainty (OFU) principle. Based on the first algorithm, we propose our main algorithm, which utilizes entropy regularization. […]