Discovery of Probabilistic Dirichlet-to-Neumann Maps on Graphs
arXiv:2506.02337v2 Announce Type: replace-cross Abstract: Dirichlet-to-Neumann maps enable the coupling of multiphysics simulations across computational subdomains by ensuring continuity of state variables and fluxes at artificial interfaces. We present a novel method for learning Dirichlet-to-Neumann maps on graphs using Gaussian processes, specifically for problems where the data obey a conservation constraint from an underlying partial differential equation. Our approach combines discrete exterior calculus and nonlinear optimal recovery to infer relationships between vertex and edge values. This framework yields […]