Identification of a Kalman filter: consistency of local solutions
arXiv:2601.04198v1 Announce Type: new Abstract: Prediction error and maximum likelihood methods are powerful tools for identifying linear dynamical systems and, in particular, enable the joint estimation of model parameters and the Kalman filter used for state estimation. A key limitation, however, is that these methods require solving a generally non-convex optimization problem to global optimality. This paper analyzes the statistical behavior of local minimizers in the special case where only the Kalman gain is estimated. We prove that […]