Differentially Private Inference for Longitudinal Linear Regression
arXiv:2601.10626v1 Announce Type: cross Abstract: Differential Privacy (DP) provides a rigorous framework for releasing statistics while protecting individual information present in a dataset. Although substantial progress has been made on differentially private linear regression, existing methods almost exclusively address the item-level DP setting, where each user contributes a single observation. Many scientific and economic applications instead involve longitudinal or panel data, in which each user contributes multiple dependent observations. In these settings, item-level DP offers inadequate protection, and […]