FlexAct: Why Learn when you can Pick?
Learning activation functions has emerged as a promising direction in deep learning, allowing networks to adapt activation mechanisms to task-specific demands. In this work, we introduce a novel framework that employs the Gumbel-Softmax trick to enable discrete yet differentiable selection among a predefined set of activation functions during training. Our method dynamically learns the optimal activation function independently of the input, thereby enhancing both predictive accuracy and architectural flexibility. Experiments on synthetic datasets show that our model consistently […]