Small Gradient Norm Regret for Online Convex Optimization
arXiv:2601.13519v3 Announce Type: replace Abstract: This paper introduces a new problem-dependent regret measure for online convex optimization with smooth losses. The notion, which we call the $G^star$ regret, depends on the cumulative squared gradient norm evaluated at the decision in hindsight. We show that the $G^star$ regret strictly refines the existing $L^star$ (small loss) regret, and that it can be arbitrarily sharper when the losses have vanishing curvature around the hindsight decision. We establish upper and lower bounds […]